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ABSTRACT TheYukon–KuskokwimDelta ofAlaska, USA is a globally important region for numerous avian
species includingmillions ofmigrating andnestingwaterbirds.However, data on the current spatial distribution
of critical nesting areas and the importance of environmental variables in the selection of nest locations are
generally lacking for waterbirds in this region.We modeled nest densities for 6 species of geese and eiders that
commonly breed on the Yukon–Kuskokwim Delta, including cackling goose (Branta hutchinsii minima),
emperor goose (Chen canagica), black brant (B. bernicla nigricans), greater white-fronted goose (Anser albifrons
frontalis), spectacled eider (Somateria fischeri), andcommoneider (S.mollissima).Thedatausedwere fromsingle-
visit nest searches on 2,318 plots sampled during 29 years from 1985 to 2013.Wemodeled nest density for each
species by combining data across years and using random forests methods and time-static landscape
environmental variables. These models provide the first habitat-specific predictive distributions of nest density
for these species breeding on the Yukon–Kuskokwim Delta of Alaska. Predictive performance of the random
forests models varied among species, explaining 13–69% of the variance in nest density. For most species, nest
density was greatest near the coast and within lowland habitats. Predicted nest densities mapped across the
coastal zone of the Yukon–Kuskokwim Delta revealed areas of high and low nest densities that can be used to
inform management and conservation decisions. � 2017 The Wildlife Society.
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The Yukon–Kuskokwim Delta of Alaska, USA is the largest
intertidal wetland in North America (Thorsteinson et al.
1989), providing globally important habitat for numerous
avian species including millions of nesting and migrating
waterfowl and shorebirds (Gill and Handel 1981, 1990; King
and Derksen 1986). The Yukon–Kuskokwim Delta supports
almost the entire breeding populations of emperor geese
(Chen canagica) and cackling geese (Branta hutchinsii
minima) and the majority of the Pacific Flyway populations
of black brant (B. bernicla nigricans) and greater white-
fronted geese (Anser albifrons frontalis; King and Dau 1981,
Schmutz 2001). In addition, several species that breed on the
Yukon–Kuskokwim Delta are designated as special conser-
vation and management concern, including the threatened
spectacled eider (Somateria fischeri), common eider (S.
mollissima), emperor goose, and black brant.

Within the Yukon–Kuskokwim Delta, waterbird nest
densities are greatest within coastal fringe habitats, with
some species occurring only within these habitats (Holmes
and Black 1973, King andDau 1981, Platte and Stehn 2009).
Coastal fringe habitats depend on coastal estuarine processes
including tidal erosion, deposition of sediments, storm-tide
flooding, and salt intrusion (Kincheloe and Stehn 1991,
Jorgenson 2000, Jorgenson and Ely 2001). Currently, storm
surges are relatively common on the Yukon–Kuskokwim
Delta, especially in the fall (Wise et al. 1981, Mason et al.
1996, Terenzi et al. 2014), with small storms occurring nearly
every year and larger storms (i.e., surges reaching heights
>3.0m above mean sea level) having occurred �3 times in
the last 50 years (Terenzi et al. 2014). Such storm events can
inundate low-lying areas up to 30–40 km inland (Dau et al.
2011, Terenzi et al. 2014). Thus, long-term flooding within
this region ultimately shapes the landforms and vegetation
communities on which nesting waterbirds in this region
depend (Kincheloe and Stehn 1991, Jorgenson 2000,
Jorgenson and Ely 2001). Because of the complex relation-
ship between these terrestrial ecosystems and coastal
estuarine processes and the global importance of migratory
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bird species, the Yukon–Kuskokwim Delta may be highly
sensitive to climate-mediated changes (Jorgenson and Ely
2001, Jorgenson and Dissing 2010), with predicted changes
related to climate (e.g., sea level rise, increased frequency and
intensity of coastal storms, changes in seasonal patterns of
storminess, reduction in permafrost; Intergovernmental
Panel on Climate Change 2007) having the potential to
dramatically alter waterbird nesting habitat in the near
future.
A first step in understanding the relationship between

habitat and nesting waterbirds on the Yukon–Kuskokwim
Delta is to determine the current location of important
nesting areas and understand how nest sites are selected in
relation to environmental conditions. Although current
breeding distributions of waterbirds on the Yukon–
Kuskokwim Delta have been mapped based on United
States Fish and Wildlife Service (USFWS) aerial waterbird
survey observations (Eldridge 2003, Platte and Stehn 2009),
the large-scale habitat selection patterns of these species in
this region are largely unknown. Current efforts to describe
habitat selection patterns are limited to observational
studies (Olsen 1951, Spencer et al. 1951, Holmes and
Black 1973, Mickelson 1975, King and Dau 1981) or small-
scale habitat selection studies for only select species (Ely and
Raveling 1984, Petersen 1990, Babcock and Ely 1994,
Grand et al. 1997, Schmutz 2001). Identification and
understanding of contemporary species distributions in
relation to habitat availability, as revealed by large-scale
habitat associations, will provide baseline data that are
currently lacking for waterbirds within this region.
Accordingly, our objectives for this study were to identify
the important environmental variables related to geese and
eider nest densities on the Yukon–Kuskokwim Delta and
create and map predictive surfaces of geese and eider nest
densities.

STUDY AREA

The study area encompassed approximately 4,650 km2 of the
central coastal zone of the Yukon–Kuskokwim Delta,
between the Askinuk and Nelson Island mountains, and
from the west coast to roughly 50 km inland (Fig. 1). Within
this region, coastal processes shape vegetation along a
gradient from coastal to inland areas (Kincheloe and Stehn
1991, Jorgenson 2000, Jorgenson and Ely 2001). Coastal
areas are characterized by flat topography (e.g., �1m
elevation change over 7.5 km on one toposequence from the
coast; Jorgenson and Ely 2001), where sedge and graminoid
meadows are interspersed with numerous tidal rivers and
sloughs and irregularly shaped, shallow water bodies (Tande
and Jennings 1986, Kincheloe and Stehn 1991, Jorgenson
2000). These areas are tidally influenced up to 39–55 km
inland (Tande and Jennings 1986, Dau et al. 2011) by
regularly occurring high tides and periodic flooding during
extreme high tide events and storm surges. Storm surges
occur most commonly in the fall, with the largest storms (i.e.,
minimum central surface pressures <1,000mb) since the
1900s occurring from August to February (Terenzi et al.
2014). These storm surges can inundate areas up to

30–40 km inland (Dupr�e 1980, Dau et al. 2011, Terenzi
et al. 2014). Conversely, upland areas, not historically prone
to flooding, consist mainly of drier, salt-intolerant vegeta-
tion, dominated by dwarf shrubs, mosses, and lichens (Tande
and Jennings 1986, Kincheloe and Stehn 1991, Jorgenson
2000). The Bering Sea moderates temperatures year round
on the Yukon–Kuskokwim Delta, with mean monthly
temperatures ranging from 108C in the summer and
�148C in the winter (Thorsteinson et al. 1989). Annual
rainfall averages 51 cm, with an additional 102–127 cm as
snowfall (Thorsteinson et al. 1989). Avian species dominate
the fauna of the Yukon–Kuskokwim Delta, with millions of
waterbirds (i.e., ducks, geese, cranes, gulls, terns, shorebirds)
nesting annually. Dominant nest predators include Arctic fox
(Vulpes lagopus), glaucous gulls (Larus hyperboreus), mew gulls
(L. canus), and parasitic jaegers (Stercorarius parasiticus). The
study area is largely uninhabited with the exception of 2
villages along the northern border (Hooper Bay, population
1,180; Chevak, population 1,049) and 1 village along the
southern border (Newtok, population 354). Inhabitants of
these villages use the study area for subsistence hunting and
fishing, accessing the area by motorboats.

Figure 1. Location of study area, including areas of intensive and extensive
waterbird nest surveys on the Yukon–Kuskokwim Delta of Alaska, USA,
1985–2013.
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METHODS

Nest Densities

The USFWS conducted ground surveys during 29 years
from 1985 to 2013 as part of their annual waterbird
monitoring program (Fischer and Stehn 2014). As informa-
tion accumulated on the distribution of waterbirds over the
years, protocols were updated and sampling design and effort
varied. From 1985 to 1993 and in 1998 and 1999, USFWS
sampled various regions of the central coastal zone (i.e.,
extensive survey area; Fig. 1) by randomly selecting accessible
plots on public lands (�69% of the Yukon Delta National

Wildlife Refuge; USFWS 2004). From 1994 to 1997, and
since 2000, the survey focused within a smaller region of
716 km2 (i.e., intensive area; Fig. 1) corresponding to the area
with the majority (�67%) of historical aerial observations of
spectacled eider, a priority species because of its threatened
status. In all years, randomization was restricted so that plots
did not overlap other plots being surveyed in the same year or
within the past 5 years. In most years (1988–1994 and 1997–
2013), the survey used standardized plot sizes of 0.32 km2

(402� 805m); however, plot sizes varied from 1985 to 1987,
ranging from 0.16–1.66 km2, and standardized to 0.45 km2

and 0.36 km2 in 1995 and 1996, respectively. In all years,

Table 1. Explanatory variables used to predict nest densities of geese and eider species breeding on the Yukon–KuskokwimDelta of Alaska, USA, 1985–2013.
Habitat descriptions taken directly from Ducks Unlimited, Inc. (2011).

Variable Abbreviation Description and composition

% coastal dwarf shruba Cds 25–100% shrub cover, shrubs <0.25m most common, periodic tidal flooding.
Common dwarf shrub species include black crowberry (Empetrum nigrum),
oval-leaf willow (Salix ovalifolia), and Alaska bog willow (Salix fuscescens).
Dominant graminoid is looseflower alpine sedge (Carex rariflora), usually
with a component of cottongrass (Eriophorum spp.). Other graminoids
include circumpolar reedgrass (Calamagrostis deschampsioides), tufted
hairgrass (Deschampsia caespitosa), and dunegrass (Elymus arenarius).
Common forbs include roseroot (Sedum rosea), arctic daisy (Chrysanthemum
arcticum), cloudberry (Rubus chamaemorus), Scots lovage (Ligusticum
scoticum), coltsfoot (Petasites spp.), and peavine (Lathyrus spp.)

% coastal dwarf shrub-pond mosaica
�

Pm Same composition as coastal dwarf shrub, but in a mosaic with stable ponds
% lower coastal salt marsha Lcsm �40% herbaceous, <25% shrub cover, <50% of the herbaceous cover is

bryoid, tidally flooded monthly or more frequently. Dominated by
Ramenski sedge (Carex ramenskii) and/or Hoppner sedge (C. subspathacea).
Lyngbye sedge (C. lyngbyaei) is found inland, on less saline sites along tidal
sloughs

% upper coastal brackish meadowa Ucbm �40% herbaceous, <25% shrub cover, <50% of the herbaceous cover is
bryoid, tidally flooded periodically during storm tides or extreme high tides.
Sedge dominated, with looseflower alpine sedge most common. Other
species include circumpolar reedgrass, arctic daisy, oval-leaf willow,
common cottongrass (Eriophorum angustifolium), and water sedge (Carex
aquatilis)

% coastal graminoida Cg �40% herbaceous, <25% shrub cover, <50% bryoid, periodically tidally
flooded, grass dominated. American dunegrass (Leymus mollis) is most
common, but coastal bluegrass (Poa eminens), circumpolar reedgrass,
common silverweed (Potentilla egedii), peavine, and other forbs may be
present

% sandbar or mudflata Mud Sandbar or mudflat (non-vegetated soil)
% uplanda

�
Upld Composite of the following land cover classifications: tall shrubs, low shrubs,

alpine dwarf shrub lichen, crowberry heath, lowland dwarf shrub peatland,
lowland dwarf shrub lichen, dwarf shrub-wet graminoid mosaic, moss-
graminoid peatland, mesic-dry graminoid meadow, wet graminoid,
emergent vegetation, sparse vegetation, rock or gravel, and snow or ice

% potential nesting habitatb
�

Phabt Vegetated area that could be used for nest placement (areas not classified as
water, sandbar or mudflat, or rock or gravel)

�x density of waterbodiesc Dwtr �x number of waterbodies per km2

% area of waterbodiesc
�

Wtr % area classified as waterbody
% area of riverinec Rvr % area classified as riverine
Length of pond shorelinec Pshr Length of pond shoreline (km)
Shoreline complexityc Cplx Length of pond shoreline divided by the total area classified as waterbody

within grid cell (km/km2)
Length of riverine and tidal sloughsc Flow Length of riverine and tidal slough flow lines (km)
Distance to coastc Dcst Distance to coast (km)
Distance to inland mudflata Dmdfl Distance to inland mudflat (km)
Year Year �x year of surveyed plots

a Obtained from the Ducks Unlimited land cover map (Ducks Unlimited, Inc. 2011).
b Developed based on both the Ducks Unlimited land cover map (Ducks Unlimited, Inc. 2011) and the National Hydrography Dataset (Simley and Carswell
2009).

c Obtained from the National Hydrography Dataset (Simley and Carswell 2009).
� Variable removed from analyses because of high correlation with other variables.
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surveyors drew plot boundaries on aerial photographs (1985–
2007) or IKONOS satellite imagery (2008–2013) to
facilitate orientation while in the field.
Each year, the program surveyed waterbird nests using

single-visit area searches during incubation (typically from
early to mid-Jun). During surveys, 2–4 surveyors systemati-
cally searched each plot for nests. Search duration of
2–10 hours depended on the number of surveyors, available
habitat, nest density, and surveyor experience. Surveyors
recorded all active and destroyed waterbird (i.e., waterfowl,
crane, loon, gull, and tern) nests and nests of other species as
incidentally encountered. However, for these analyses, we
focused only on geese and eiders because these species are of
particular management concern and were the main focus of
annual surveys; other species exhibited low nest densities
throughout the study area (e.g., ducks), low variability in nest
densities among plots (e.g., cranes, swans), or unreliable nest
densities because many nests were likely missed (e.g.,
shorebirds, passerines). Once a surveyor found a nest, they
identified species by either visual confirmation of an adult at
the nest or by comparing down and contour feathers in the
nest bowl with a photographic field guide (Bowman 2008).
In all analyses, we did not correct for nest detection
probabilities because detection was high (x� annual nest
detection rate >75%) for geese and eider species and showed
little variation among years or observers (Fischer and Stehn
2014). Data collected during the course of this study
followed consistent protocols with regards to animal welfare.
Field procedures were observational in nature and were
approved and permitted by the USFWS Region 7
Endangered Species Program.
With data accumulated over 29 years, there was a high

degree of spatial overlap in surveyed plots, potentially
resulting in pseudoreplication. In addition, there was large
variation in the number of observed nests per plot among
closely located plots. This was likely due to the size of each
plot being too small to adequately represent the mosaic of
interwoven wetland, lake, river, slough, and mudflat habitats,
features nesting birds were likely using when making
selection decisions. Therefore, we combined surveyed plots
into 4-km2 regular grid cells for all analyses. This spatial scale
allowed us to combine several plots per regular grid cell while
still maintaining a suitable sample size for all analyses. To
reduce the survey data to regular grid cells, we first placed
2� 2-km regular grid cells over the entire study area and

then assigned survey plots to grid cells based on the location
of the plot center. We removed grid cells from the model-
fitting domain that had no surveyed plots within their
boundaries. This resulted in 535 surveyed grid cells with
1–18 survey plots/grid cell. With >1 plot/grid cell, we
treated multiple surveys as replicates and calculated the
average nest density per grid cell by dividing the number of
nests found for each species during all surveys within a grid
cell by the amount of area surveyed.

Environmental Variables
We obtained 16 environmental variables to relate to geese
and eider nest densities (Table 1). We used the land cover
map developed for the study area by Ducks Unlimited, Inc.
(based on imagery from 2000 to 2005; resolution¼ 30m;
Ducks Unlimited, Inc. 2011) to classify habitat, from which
we identified 7 single or composite classifications as
potentially important to nesting geese and eiders (i.e.,
percent coastal dwarf shrub, coastal dwarf shrub-pond
mosaic, lower coastal salt marsh, upper coastal brackish
meadow, coastal graminoid, sandbar-mudflat, upland). We
distinguished inland mudflats (i.e., located >1 km from the
coastline) from the much larger coastal mudflats because the
former occur along edges of rivers or lakes and often contain
vegetated grazing lawns used by nesting waterfowl (Schmutz
2001, Lake et al. 2006). We obtained locations and areas of
water bodies, rivers, river and tidal slough flow lines, and the
coastline from the National Hydrography Dataset (Simley
and Carswell 2009) and derived density of water bodies using
these data and ArcGIS 10 (Environmental Systems Research
Institute, Redlands, CA, USA) where each water body was
represented by a point corresponding to the centroid of the
water body (search radius¼ 10 km; output cell size¼ 1 km).
Using the land cover map and the hydrography datasets, we
considered vegetated land areas as a measure of potential
nesting habitat. We defined potential nesting habitat as all
areas not classified as water, sandbar-mudflat, or rock-gravel
according to the Ducks Unlimited land cover map (Ducks
Unlimited, Inc. 2011) or water body or river according to the
National Hydrography dataset (Simley and Carswell 2009).
For each surveyed grid cell, we extracted mean density of

water bodies, percent composition of each land cover class
and potential nesting habitat, percent composition of water
body and riverine area, and total length of pond shoreline and
riverine-tidal slough flow lines using Geospatial Modeling

Table 2. Summary statistics (i.e., number of nests found within surveyed plots and mean nest density within 4-km2 survey grid cells) and percent variance
explained from random forests models predicting nest density within 4-km2 survey grid cells for geese and eider species (ordered by % variance explained)
breeding on the Yukon–Kuskokwim Delta of Alaska, USA, 1985–2013.

Nest density (nests/km2)

Species No. nests found �x SE Range % variance explained

Greater white-fronted goose 12,119 10.1 0.5 0–69.5 68.7
Cackling goose 33,264 25.8 1.4 0–177.7 52.0
Emperor goose 9,328 9.0 0.4 0–57.8 40.2
Spectacled eider 2,254 1.7 0.1 0–18.5 37.8
Black brant 10,898 13.0 2.4 0–507.9 15.3
Common eider 835 0.8 0.1 0–33.9 13.0
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Environment (Beyer 2012). Within each surveyed grid cell,
we also divided the length of pond shoreline by the water
body area as a measure of shoreline complexity. Finally, we
estimated the distance from the nearest coastline edge or
inland mudflat to the centroid of each plot using ArcGIS 10.
Although changes to habitat characteristics have occurred

over time, we believe these changes are likely not at a large
enoughmagnitude tobias large-scalehabitat selectionpatterns
based on nest density data collected over a long time scale (e.g.,
1985–2013). For example, from 1980–2008, Jorgenson and
Dissing (2010) reported that only approximately 8.3% of the

investigated area on the Yukon–Kuskokwim Delta experi-
enced changes in ecotype, with the greatest changes due to
permafrost degradation, channel erosion, and channel
deposition. Therefore, to relate mean geese and eider nest
densities from 1985–2013 to environmental variables, we used
static environmental variables developed from data within this
same time period.

Nest Density Models
We modeled nest densities (nests/km2) for each species of
geese and eider in relation to the above environmental

Figure 2. Variable importance plots from random forests models predicting geese and eider nest densities on the Yukon–Kuskokwim Delta of Alaska, USA,
1985–2013. Variable importance values indicate the percent increase in prediction error (MSE) after randomly permuting the values of the explanatory variable
for the out-of-bag observations. Variables with higher values of percent increase in MSE indicate greater importance in predicting waterbird nest density.
Cds¼% coastal dwarf shrub, Lcsm¼% lower coastal salt marsh, Ucbm¼% upper coastal brackish meadow, Cg¼% coastal graminoid, Mud¼% sandbar or
mudflat, Dwtr¼�x density of waterbodies, Rvr¼% area of riverine, Pshr¼ length of pond shoreline, Cplx¼ shoreline complexity, Flow¼ length of riverine and
tidal sloughs, Dcst¼ distance to coast, and Dmdfl¼ distance to inland mudflat.
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variables and the mean of survey years from all plots within
each grid cell to account for changing population densities
through time (Table 1). Prior to analyses, we removed grid
cells in which >10% of the land cover in the surveyed grid
cell was unclassified (usually due to cloud cover along the
coast) in the Ducks Unlimited land cover map (n¼ 9; Ducks
Unlimited, Inc. 2011) because relationships between nest
density and land cover would be unreliable. We also removed
redundant variables using variance inflation factors (VIF),
where we removed one variable from each highly correlated
(r> 0.60) pair until remaining variables had a VIF� 5.0.
This resulted in the removal of 4 variables (% upland, %
coastal dwarf shrub-pond mosaic, % potential nesting

habitat, and % area of water bodies; Table 1) from all
further analyses.
To model nest densities, we used random forests, an

ensemble regression tree approach (Breiman 2001). In
standard regression trees, the response variable is
recursively partitioned into increasingly homogenous
groups through binary splits of a single predictor variable
at a time (Breiman et al. 1984). At each node, the
threshold value and the predictor variable are selected from
the entire suite of predictors, so that the difference
between the resulting branches is maximized. To achieve
greater predictive accuracy, random forests combines
predictions from many (e.g., 1,000 in this study) regression

Figure 3. Partial dependence plots from random forests models predicting cackling goose nest density on the Yukon–Kuskokwim Delta of Alaska, USA,
1985–2013. Partial dependence plots represent the relationship between an explanatory variable and nest density while holding all other explanatory variables
in the model at their mean. Explanatory variables are listed in order of importance. Cds¼% coastal dwarf shrub, Lcsm¼% lower coastal salt marsh,
Ucbm¼% upper coastal brackish meadow, Cg¼% coastal graminoid, Mud¼% sandbar or mudflat, Dwtr¼�x density of waterbodies, Rvr¼% area of
riverine, Pshr¼ length of pond shoreline, Cplx¼ shoreline complexity, Flow¼ length of riverine and tidal sloughs, Dcst¼ distance to coast, and
Dmdfl¼ distance to inland mudflat.
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trees (Breiman 2001). Each regression tree is grown from a
bootstrap sample of the data, with only a small number
(e.g., a third of all predictor variables in this study) of
randomly selected variables available for partitioning at
each node. Each fully grown tree is then used to predict the
out-of-bag observations (i.e., observations not included in
the bootstrap sample; �37% of the observations) and
estimate the percent variance explained by the model.
Because the out-of-bag observations are not used to fit the
model, these estimates are cross-validated accuracy assess-
ments (Cutler et al. 2007). Out-of-bag observations can
also be used to assess variable importance via the percent
increase in prediction error (MSE) resulting from

randomly permuting the values of an explanatory variable
for the out-of-bag observations. We used partial depen-
dence plots to characterize the relationships between
explanatory variables and predicted nest densities (Cutler
et al. 2007). These plots display the effect of one variable
when all other predictor variables in the model are held at
their mean values. For each species, we present the percent
variance explained by the model, as well as variable
importance values and partial dependence plots to estimate
the relative effect of each environmental variable on nest
densities. We ran all models using the randomForest
package (Liaw and Wiener 2002) in program R (R
Development Core Team 2011).

Figure 4. Partial dependence plots from random forests models predicting emperor goose nest density on the Yukon–Kuskokwim Delta of Alaska, USA,
1985–2013. Partial dependence plots represent the relationship between an explanatory variable and nest density while holding all other explanatory variables
in the model at their mean. Explanatory variables are listed in order of importance. Cds¼% coastal dwarf shrub, Lcsm¼% lower coastal salt marsh,
Ucbm¼% upper coastal brackish meadow, Cg¼% coastal graminoid, Mud¼% sandbar or mudflat, Dwtr¼�x density of waterbodies, Rvr¼% area of
riverine, Pshr¼ length of pond shoreline, Cplx¼ shoreline complexity, Flow¼ length of riverine and tidal sloughs, Dcst¼ distance to coast, and
Dmdfl¼ distance to inland mudflat.
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Predictive Surfaces
To predict nest densities over the entire central coastal
zone of the Yukon–Kuskokwim Delta, we used the 4-km2

regular grid cells developed for the entire study area and
the same environmental variables as the surveyed grid cells
(Table 1). We then obtained predicted species-specific
nest densities for each predictive grid cell using the
random forests models developed above and 2013 as the
survey year. We passed the environmental data from
predicted grid cells down the regression trees, and
obtained predicted nest densities by averaging model
outputs from all trees. We then mapped predicted nest
densities for the entire study area. Because slight differ-
ences in placement of grid cells could result in different

predicted nest densities, we used a moving window
approach, where we shifted predictive grid cells by 1 km
in each orthogonal direction and then averaged cells to
create final predictive surfaces. However, if >10% of the
predictive grid cell was unclassified in the Ducks
Unlimited land cover map (Ducks Unlimited, Inc.
2011), we removed these areas from final predictive
surfaces.

RESULTS

Surveyors conductednest searches at 2,318plots during 29 years
between 1985 and 2013 (50–119 plots surveyed/yr). Within
theseplots, thenumber ofnests foundand themeannest density
was greatest for greater white-fronted goose, cackling goose,

Figure 5. Partial dependence plots from random forests models predicting black brant nest density on the Yukon–Kuskokwim Delta of Alaska, USA, 1985–
2013. Partial dependence plots represent the relationship between an explanatory variable and nest density while holding all other explanatory variables in the
model at their mean. Explanatory variables are listed in order of importance. Cds¼% coastal dwarf shrub, Lcsm¼% lower coastal salt marsh, Ucbm¼% upper
coastal brackish meadow, Cg¼% coastal graminoid, Mud¼% sandbar or mudflat, Dwtr¼�x density of waterbodies, Rvr¼% area of riverine, Pshr¼ length of
pond shoreline, Cplx¼ shoreline complexity, Flow¼ length of riverine and tidal sloughs, Dcst¼ distance to coast, and Dmdfl¼ distance to inland mudflat.
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emperor goose, and spectacled eider (Table 2). The percentage
of variance explained by the random forests models varied
among species, ranging from 13–69% (Table 2). Variable
importance plots illustrated that distance to coast was an
important explanatory variable for all geese and eider species
(Fig. 2); black brant and common eider nest density declined
sharply as distance to coast increased, whereas cackling goose,
emperor goose, and spectacled eider exhibited more gradual
declines (Figs. 3–8). Conversely, nest density of greater white-
fronted goose was greatest at intermediate levels of distance to
coast (Fig. 6). Most species also tended to select greater
percentagesof lowlandhabitats (Figs.2–8).Forexample,greater
nest densities of spectacled eider and common eider occurred

when the percentage of coastal graminoid land cover class was
greater, whereas the percentage of lower coastal salt marsh was
positively related to nest densities of cackling goose, emperor
goose, and greater white-fronted goose. Percentage ofmudflats
was also important for black brant, with greater nest densities
occurring in areas with more coastal mudflats. In addition to
environmental variables, mean survey year was important for
cackling goose, black brant, greater white-fronted goose, and
spectacled eider (Fig. 2), with all species except black brant
exhibiting increases in nest densities in the mid-1990s (Figs. 3,
6, and 7). Black brant, on the other hand, exhibited relatively
stable to slightly decreasing populations since 1985 (Fig. 5).
Predicted nest densitiesmapped across theYukon–Kuskokwim

Figure 6. Partial dependence plots from random forests models predicting greater white-fronted goose nest density on the Yukon–KuskokwimDelta of Alaska,
USA, 1985–2013. Partial dependence plots represent the relationship between an explanatory variable and nest density while holding all other explanatory
variables in the model at their mean. Explanatory variables are listed in order of importance. Cds¼% coastal dwarf shrub, Lcsm¼% lower coastal salt marsh,
Ucbm¼% upper coastal brackish meadow, Cg¼% coastal graminoid, Mud¼% sandbar or mudflat, Dwtr¼�x density of waterbodies, Rvr¼% area of riverine,
Pshr¼ length of pond shoreline, Cplx¼ shoreline complexity, Flow¼ length of riverine and tidal sloughs, Dcst¼ distance to coast, and Dmdfl¼ distance to
inland mudflat.
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Delta coastal zone for each species revealed spatially explicit
areas of high and low densities (Fig. 9).

DISCUSSION

This study provides the first habitat-specific predictive
distributions of nest densities for the 6 species of geese and
eiders breeding on the Yukon–Kuskokwim Delta of Alaska.
These maps and the habitat associations for these species
provide key baseline information that has thus far been
lacking. For almost all species of geese and eiders
investigated in this study, nest density increased closer to
the coast and within lowland habitats (i.e., lower coastal salt
marsh and coastal graminoid). These coarse habitat

associations support previous studies, with several studies
noting greater densities of waterbirds within these coastal
fringe habitats (Holmes and Black 1973, King and Dau
1981, Platte and Stehn 2009). Selection of these habitats may
be due to increased food availability or decreased predation
pressure in these areas. For example, forage plants preferred
by geese are more frequent in these coastal land cover types.
In addition, because the numerous rivers, tidal sloughs, and
lakes within the coastal fringe areas inhibit foraging
movements and limit construction of subterranean dens by
Arctic fox, selection of nests sites by geese and eiders within
these areas may be a means by which individuals increase nest
survival and reduce predation pressure (Olsen 1951, Spencer

Figure 7. Partial dependence plots from random forests models predicting spectacled eider nest density on the Yukon–Kuskokwim Delta of Alaska, USA,
1985–2013. Partial dependence plots represent the relationship between an explanatory variable and nest density while holding all other explanatory variables in
the model at their mean. Explanatory variables are listed in order of importance. Cds¼% coastal dwarf shrub, Lcsm¼% lower coastal salt marsh, Ucbm¼%
upper coastal brackish meadow, Cg¼% coastal graminoid, Mud¼% sandbar or mudflat, Dwtr¼�x density of waterbodies, Rvr¼% area of riverine,
Pshr¼ length of pond shoreline, Cplx¼ shoreline complexity, Flow¼ length of riverine and tidal sloughs, Dcst¼ distance to coast, and Dmdfl¼ distance to
inland mudflat.
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et al. 1951, Grand et al. 1997). However, nesting within
these areas is not without its risks because these areas are
highly susceptible to flooding during high tide and storm
events (Hansen 1961, King 1964, Jorgenson and Ely 2001);
these risks are likely to increase with climate change as sea
levels rise, storm intensity and frequency increase, and
seasonal patterns of storminess change.
Despite the general association between nest densities and

distance to coast, we also noted species-specific nest-site
selection patterns such as the gradient of species from the
coast to inland areas. Black brant and common eider were
predicted to nest at greatest densities within a narrow band
(i.e., <5 km) along the coastline, whereas cackling goose,

emperor goose, and spectacled eider nested with greater
densities farther inland (i.e., 10–15 km from the coast;
Fig. 9). Greater white-fronted goose nested the farthest
inland as compared to all other species. This gradient also
likely reflects the relative vulnerability of these species to
future climate change impacts. For example, those species
with limited distributions closest to the coast (i.e., black
brant, common eider) are likely to be at the greatest risk of
habitat loss, habitat destruction, and losses of eggs and chicks
during the nesting season as a result of rising sea levels and
increased storm intensity and frequency. Moreover, a
significant proportion of the entire population (e.g., emperor
geese, cackling geese) or the Pacific Flyway population (e.g.,

Figure 8. Partial dependence plots from random forests models predicting common eider nest density on the Yukon–KuskokwimDelta of Alaska, USA, 1985–
2013. Partial dependence plots represent the relationship between an explanatory variable and nest density while holding all other explanatory variables in the
model at their mean. Explanatory variables are listed in order of importance. Cds¼% coastal dwarf shrub, Lcsm¼% lower coastal salt marsh, Ucbm¼% upper
coastal brackish meadow, Cg¼% coastal graminoid, Mud¼% sandbar or mudflat, Dwtr¼�x density of waterbodies, Rvr¼% area of riverine, Pshr¼ length of
pond shoreline, Cplx¼ shoreline complexity, Flow¼ length of riverine and tidal sloughs, Dcst¼ distance to coast, and Dmdfl¼ distance to inland mudflat.
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black brant, greater white-fronted geese) of many of these
species nest on the Yukon–KuskokwimDelta (King and Dau
1981, Schmutz 2001), adding to the relative vulnerability of
these species to climate-mediated changes within this region.
However, the ability of individual species to adapt to
increased flooding risks and habitat loss remains unknown.
The amount of variance explained by the predictive models

developed in this study varied among species. Unexplained
variance may have been due to several factors including
explanatory variables important for individual species but not
incorporated into the analyses, the accuracy and scale of
environmental variables included in analyses, and annual
variability in nest-site selection patterns. When conducting
large-scale habitat assessments, potential explanatory vari-
ables are limited to those that can be mapped across a large
spatial extent. However, waterbird nest densities may also
vary as a result of factors such as social interactions (e.g.,
aggregation among colonial nesting birds such as black brant
or inter- and intra-specific competition), predator densities,
and fine-scale habitat features (e.g., vegetation height, water

body depth and salinity, shoreline complexity, presence of
islands and peninsulas) that are not currently (or unable to
be) modeled at a large spatial scale. In addition, we suspect
certain habitat features may also have been important that
could not be incorporated because of a lack of current
geographic information system (GIS) layers. For example,
the amount and quality of grazing lawn habitat is especially
important in brood-rearing areas for black brant and emperor
geese (Schmutz 2001, Schmutz and Laing 2002). Specific
variables for proximity to brood rearing habitat were not
among our environmental variables and these could
contribute to predicting the distribution of nest density
for some species (Grand et al. 1997). Furthermore, predictive
models depend on the scale and accuracy of the environ-
mental variables used in these analyses. If there are
classification errors in the GIS layers or if the scale at
which these layers were developed are incongruent with the
scale at which waterbirds select nesting habitat, then accuracy
may decline. For example, better accuracy in environmental
layers such as land cover classifications may increase the

Figure 9. Predicted nest densities (i.e., no. nests/km2) for cackling goose, emperor goose, black brant, greater white-fronted goose, spectacled eider, and
common eider on the Yukon–Kuskokwim Delta of Alaska, USA, 1985–2013. Areas with no predictions (e.g., unclassified habitat was>10% in predictive grid
cells) are in white.
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accuracy of models predicting waterbird nest densities within
this region. Because we also combined many years of nest
data in our analyses, our models were unable to account for
any annual variability in nest-site selection patterns. Nest-
site selection may vary annually in relation to annual changes
in habitat conditions such as the amount and duration of
snow cover (Ely and Raveling 1984, Petersen 1990) or
deposition of sediment following fall storm surges (Dau et al.
2011). However, large annual movements among nesting
locations detectable at the scale at which we conducted this
study may be unlikely because most species of geese and
eiders investigated in this study exhibit high natal and
breeding site fidelity, with annual movements likely
restricted to a local scale. These potential limitations must
be considered when interpreting these results. Nevertheless,
the predictive maps provide a baseline for geese and eider
nest density distributions within this region, based on
association of nest density with large-scale habitat features,
and provide a fundamental advancement in predicting
distributions of these species.

MANAGEMENT IMPLICATIONS

The predicted nest density maps developed in this study
identify important regions for nesting geese and eiders that
provide a basis for guiding future management and conserva-
tion decisions. For example, these maps can be used to assess
the direct (i.e., habitat loss) and indirect (e.g., increased risk
from oil spills, habitat alteration and fragmentation, increased
disturbance, enhanced predator populations) effects of future
development scenarios. Additionally, as models are developed
to predict changes in environmental conditions (e.g., sea level
rise, storm surge intensity, vegetation changes, changes to
surface water hydrology) under various climate change
scenarios, these predictive layers can be used in conjunction
with waterbird nest density maps to develop species-specific
vulnerability assessments and adaptation strategies based on
waterbird breeding habitat refugia. Future monitoring efforts
could also benefit from the predictive maps developed in this
study by, for example, defining sampling strata based on
expected nest densities. Future efforts should be made to
validate and improve the current predictions presented here.
For example, future efforts may benefit from implementing a
standardized sampling design specifically for the purpose of
habitat suitability modeling and including additional or more
accurate environmental layers that were unavailable for this
study.
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